隨著工業(yè)的發(fā)展,超聲波清洗機所清洗的工件越來越精細,對工件清潔度的要求也越來越高,因此從清洗的效果及經(jīng)濟性考慮,如何正確選擇超聲波清洗的頻率與功率顯得至關重要,一般情況都需要從實驗獲取數(shù)據(jù)。
這里有二個概念:功率和頻率。在超聲波精密清洗中,當一定頻率的超聲清洗后達不到清潔的效果時,如果工件上要去除的雜質(zhì)顆粒較大,就可能是超聲波功率不足,一般增加超聲波功率就可解決該問題;但相反的如果工件上要去除的雜質(zhì)顆粒非常小,那么無論功率怎么增大,都無法達到清潔的要求。原因在于:當液體流過工件表面時,會形成一層粘性膜。低頻時一般該層粘性膜很厚,小顆粒就埋藏在里面,無論超聲波的功率(強度)多大,空化氣泡都無法與小顆粒接觸,故無法把小顆粒徹底除去;而當超聲波頻率升高時,粘性膜的厚度就會減少,超聲波產(chǎn)生的空化泡就可以接觸到小顆粒,將它們從工件表面剝落。所以,低頻的超聲波清除大顆粒雜質(zhì)的效果很好,但清除小顆粒雜質(zhì)效果就很差。相對而言,高頻超聲對清除小顆粒雜質(zhì)就特別有效。
超聲波頻率的選擇
一般的來講,清洗五金、機械、汽摩、壓縮機等行業(yè)的清洗多采用28KHZ頻率的清洗機。光學光電子清洗、線路板清洗等多采用40KHZ的頻率,高頻超聲清洗機適用于計算機,微電子元件的精細清洗,兆赫超聲清洗適用于集成電路芯片、硅片及波薄膜的清洗,能去除微米、亞微米級的污物而對清洗件沒有任何損傷。而對于一些精密清洗(如液晶體、半導體等)的應用上,使用傳統(tǒng)的頻不但沒法達到清洗的要求,而且還可能造成工件的損傷。最典型的例子就是關于軍用電子產(chǎn)品,行業(yè)已明文規(guī)定不允許使用傳統(tǒng)的頻率(20~30KHz)的超聲波清洗機。其實在一些歐美、日本等發(fā)達國家,已通過選用高頻清洗機(80KHz或以上頻率,有的已經(jīng)達到200K或400K)使這個問題得到了解決。
那么為什么高頻清洗能避免對工件的損傷呢?大家都知道超聲波清洗的基本原理是基于液體的空化效應。事實上空化效應的強度直接跟頻率有關,頻率越高,空化氣泡越小,空化強度越弱,且其減弱的程度非常大。舉例說,如將25KHz時的空化強度比作1,40KHz時的空化強度則為1/8,到了80KHz時,空化強度就降到0.02。所以如果頻率選擇正確,超聲波損傷工件的問題就不存在了。
由此可見,超聲空化閥值和超聲波的頻率有密切關系,頻率越高,空化閥越高。換句話說,頻率低,空化越容易產(chǎn)生,而且在低頻情況下液體受到的壓縮和稀疏作用有更長的時間間隔,使氣泡在崩潰前能生長到較大的尺寸,增高空化強度,有利于清洗作用。所以低頻超聲波清洗適用于大部件表面或者污物和清洗件表面結(jié)合度高的場合。但易腐蝕清洗件表面,不適宜清洗表面光潔度高的部件,而且空化噪音大。40 KHZ左右的頻率,在相同聲強下,產(chǎn)生的空化泡數(shù)量比頻率為20KHZ時多,穿透力較強,宜清洗表面形狀復雜或有盲孔的工件,空化噪音較小,但空化強度較低,適合清洗污物與被清洗件表面結(jié)合力較弱的場合。
超聲波功率的選擇
當聲強增加時,空化泡的最大半徑與起始半徑的比值增大,空化強度增大,即聲強愈高,空化愈強烈,有利于超聲波清洗作用。但不是超聲波聲功率越大越好,聲強過高,會產(chǎn)生大量無用的氣泡,增加散射衰減,形成聲屏障,同時聲強增大也會增加非線性衰減,這樣都會削弱遠離聲源地方的清洗效果。所以,超聲波清洗的效果不一定于與所加功率和工作時間成正比,有時用小功率花費很長時間也沒有清除污垢,而如果功率達到一定數(shù)值,則有可能很快將污垢去除。
若超聲波功率太大,這時液體中空化強度大大增加,較精密的零件將產(chǎn)生蝕點,水點腐蝕也增大,如果振動板表面已受到空化腐蝕,強功率下水底產(chǎn)生空化腐蝕更嚴重,使設備壽命降低,造成不必要的損失,同時清洗缸底部振動板空化也十分嚴重,使缸的壽命縮短。
但超聲波清洗功率選擇小了,花費很長時間也沒有清除污垢,也是不可取的。常規(guī)的超聲波清洗在工業(yè)當中,標準型超聲波清洗機從100W至1500W不等,工件有多大,在考慮清洗節(jié)拍的前提下,由超聲波清洗槽體的大小決定超聲波的功率。鑒于目前混響場聲強測量的技術(shù)尚不夠成熟,目前還是用單位面積上的功率來進行設計,一般一臺標準超聲清洗機輸出功率密度大多選在0.3~0.6 瓦/平方厘米左右,當然了,這只是常規(guī)情況。脈沖聚焦超聲波清洗可選得更高。
所以最好的方式是一般先做實驗來獲取合適的參數(shù)配置,按實際使用情況來配置超聲波功率,這樣有利于實際應用。另外在選購超聲波清洗機時可以盡量選擇可調(diào)節(jié)功率的清洗機。